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An alternative method is applied to the nonequilibrium zero temperature dynamics of a Sherrington-
Kirkpatrick model with nonsymmetric random exchange couplings J;;7J;. Based on exact stochastic
single spin equations for the infinite system, this mean-field Monte Carlo approach avoids the strong
finite size effects of the usual simulations for this problem. Varying the average symmetry
n=[J;J;1/ [J,%- ], we find a clear transition from ergodic dynamics at 1 <7,.=0.825 to a phase (9>17,)
where a finite fraction of the spins freezes. Only in the fully symmetric case 7=1 is the entire system

frozen.

PACS number(s): 05.50.+q, 05.40.+j, 87.10.+e, 87.22.Jb

I. INTRODUCTION

Models composed of spinlike elements interacting via
long range competing interactions play an important role
in the modeling of complex systems such as spin glasses
[1] and neural networks [2].

The dynamics of such models is usually described by a
process where each spin S; at site i is flipped into the
direction of its internal field h; =3 ;..,;J;;S; with a proba-
bility depending on S;A;. For the spin-glass applications
the strengths J;; of the couplings are symmetric, i.e.,
Jij=Jj;. A Glauber dynamics leads to a Gibbs distribu-
tion of the spins with a Hamiltonian H=—33, ;J;;S;S;.
The temporal behavior of the model at zero temperature
can be understood as a relaxation process into one of the
many valleys of a complex energy landscape which are
separated by large barriers.

In the context of neural network models, spins are usu-
ally interpreted as two-state neurons and the couplings J;;
as the synaptic efficacies [2]. In this case the physical as-
sumption of symmetric couplings is not natural and has
often been questioned as being too restrictive for biologi-
cal models.

Giving up the restriction of symmetry and the ex-
istence of a Hamiltonian opens up the possibility of more
complicated dynamical behavior in the noise-free (zero
temperature) case. A deterministic dynamics on a phase
space of finitely many (2V) states can only end in periodic
attractors. Nevertheless, the temporal development of
asymmetric models at large N can exhibit many features
of a stochastic dynamics. This happens when the period
length of the attractor and the transient time to reach the
attractor diverge with the system size. In such cases, the
system can explore large regions in phase space. Thus it
was argued that asymmetry might play a similar role as
temperature, possibly leading to a transition from a
frozen state to an ergodic behavior.

To understand the generic physics of asymmetric spin
models, a modification of the well known Sherrington-
Kirkpatrick [1] model of spin glasses was studied by
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many authors. In this model the degree of symmetry can
be varied continuously by a parameter 7. =1 means
fully symmetric couplings and =0 corresponds to the
case where J;; and J; are totally uncorrelated.

Unfortunately, the absence of a Hamiltonian and relat-
ed basic principles of thermal equilibrium such as de-
tailed balance make applications of standard analytical
tools of disorder physics, such as the replica method, im-
possible. Exact analytical solutions to systems with
asymmetry are restricted to simpler cases. These include
spins in a one-dimensional chain or on a Cayley tree [3,4],
a spherical model [5], and the fully uncorrelated case
7=0 [6-8]. A perturbative treatment of asymmetry has
been discussed in [9,10]. Also, exact results for a “soft-
spin” model of game theory involving random asym-
metric interactions could be obtained [11].

However, most results on the general asymmetric SK
model are based on simulations and can be summarized
as follows: An investigation of the model at nonzero tem-
perature by Crisanti and Sompolinsky predicts the ab-
sence of a spin-glass phase for any amount of asymmetry
(17 <1) [6], a result which is in accordance with the corre-
sponding spherical model and a perturbative treatment
by Hertz, Grinstein, and Solla [9]. On the other hand,
the situation at zero temperature seems less clear. Exten-
sive numerical simulations yield different types of dynam-
ical behavior depending on the scaling of observation
times with the size of the system.

In a first type of numerical experiment, one waits long
enough until the dynamics reaches a periodic attractor.
For 7=1, only fixed points, or, in the case of a synchro-
nous update of spins, cycles of length 2 can appear. As
first shown by Gutfreund, Reger, and Young [12], the in-
troduction of a small asymmetry does not change this
picture much. Fixed points and short cycles still dom-
inate the dynamics. Recent simulations by Niitzel and
Krey [13] performed with large N and parallel updates,
reveal that all initial conditions flow into cycles of length
two when 7 is greater than about 0.5. Below 7=0.5, the
typical period length of the attractors was found to in-
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crease exponentially with the number of spins [14]. How-
ever, this transition can be observed only after an ex-
ponentially long transient time which is needed to reach
the attractors [13]. On time scales which do not diverge
with N, a sufficiently large system will be found in a tran-
sient state. We will be concerned only with this time
scale for the rest of the paper.

In a second type of numerical experiment, one tries to
simulate the system during its transient, corresponding to
a situation, where the limit N — o is performed first, be-
fore the long time limit. For small 7, after a long enough
waiting time ?,, Crisanti and Sompolinsky [6] find that
the system relaxes into a stationary state, where the
correlations (1/N)SN_.S;(t+1,)S;(ty) of a spin S; at
two times ¢ty and f,+¢ depend only on the time lag ¢.
These correlations decay to zero with a finite correlation
time 7. The complexity of a spin trajectory S;(¢), mea-
sured by its Shannon entropy 4, was found to decrease
[15] with growing . However, by the drastic increase of
t, for larger 7, reliable estimates of 4 are not available.
Extrapolations indicate that the entropy might vanish,
and the system freezes into an ordered state for =0.6.

A third type of simulation avoids the waiting time ¢
by studying the nonequilibrium relaxation of the spins
right from ¢t=0. Using large scale simulations for the
model with sequential dynamics, Spitzner and Kinzel [16]
observe an additional effect, a “freezing transition” for
the remanent magnetization. A nonzero remanent mag-
netization, which is an indicator of a nonergodic dynam-
ics, was found for n>0.83. Above this value the system
seems to freeze. For parallel updates, a similar value for
the critical symmetry (7=0.85) was obtained by Pfen-
ning, Rieger, and Schreckenberg [17].

Unfortunately, simulations of the model show strong
finite size effects [18], which make an extrapolation to the
thermodynamic limit N— o a highly nontrivial task.
Since one has to store about N2 couplings for a fully con-
nected model, the simulation of large systems becomes in-
creasingly tedious.

On the other hand, fully connected models have the
feature that an exact dynamical mean-field theory can be
formulated for the infinite system. Recently, [19] this fact
has been used to develop an alternative method for simu-
lating the parallel dynamics of disordered systems with
long range interactions avoiding finite size problems. In
a previous Letter, the method was applied to the
remanent magnetization of the symmetric (y=1) SK
model. Using generating functions, we derived stochastic
single spin equations which yield an exact description of
the system’s dynamics for N= . To calculate disorder
averaged quantities, the single spin dynamics was simu-
lated using a Monte Carlo procedure. In this paper we
apply our method to the asymmetric SK model.

The paper is organized as follows. In Sec. IT we intro-
duce the model and its basic properties. A generating
function is used in Sec. III to construct a mean-field
theory for the dynamics. In Sec. IV the Monte Carlo
method for the single-site stochastic dynamics is de-
scribed. The results of our simulations are presented and
discussed in Sec. V. We end the paper with a summary
and an outlook in Sec. VI.

II. THE SK MODEL
WITH ASYMMETRIC INTERACTIONS

The model consists of N Ising spins S;==*1, where

every spin S; is connected to all other spins S;
by couplings J;;, which are independent Gaussian
random variables for all i< with distribution
P(J,-j)=\/N/21rexp[ —(N/Z)J,%]. Additionally the sym-
metry of the matrix of couplings is given by the average
symmetry parameter n:
[JiJi1=n/N , (1)
where the brackets denote an average over the distribu-
tion of couplings. This means that the couplings are fully
antisymmetric (J;; = —J;) if n=—1 and totally uncorre-
lated if 7=0. Finally, symmetric couplings (J;=J;),
which correspond to the spin-glass model, are given by
n=1.

Couplings with these symmetry properties can be con-
structed via

1+ 172 1 172
Jy= |1 B 5| @)
with

Ji=Jj and Ji=—Jj .

We shall restrict ourselves in this paper to the simplest
type of noise-free dynamics for the model, which consists
of a synchronous update of all spins at an elementary time
step t:

S;(t+1)=sgn[h;(t)], i=1,...,N, (3)

where the internal field of the spin S; is given by

hi()=3 JS(1) . )

i)
Vall

As for the sequential type of dynamics it can be shown

[20] that for =1 the parallel updating has a nonincreas-

ing Lyapunov function .£:

=—3 sgn (h,(t)h;(1) . (5)

For this case the system approaches a state at large times
t for which S;(¢)=S;(¢t+2) with probability 1. This in-
cludes fixed points as well as cycles of length 2. The case
n=1 also allows for the definition of a noisy dynamics
that obeys detailed balance. Then a Gibbs distribution
can be constructed [21], and equilibrium properties can
be calculated with the help of the replica trick. Such a
calculation has been performed by Fontanari and
Koberle [22] for the Little model, which is the synchro-
nous version of the Hopfield model. Unfortunately, for
all 71, Lyapunov functions or equilibrium distributions
are not available.

Another interesting limiting case of the model is found
for =0. For N — o, this case can be treated analytical-
ly [6,8,7], showing a rather stochastic type of dynamics.
For synchronous updates, correlations decay to zero just
after one time step. Although the system is a determinis-
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tic finite state automaton, a finite trajectory of spins in
the infinite system at a given site i appears as a complete-
ly random sequence of values t1, like the tosses of an
ideal coin.

In this paper, we will not try to develop a self-
consistent dynamical theory for the steady-state behavior
at infinite times. This was even a highly nontrivial task
for models with symmetric couplings, (23] and required
the introduction of a sequence of time scales all diverging
with N. Instead, we will be concerned with the transient
behavior of the model. To be specific, we shall study the
initial value problem, where at time ¢t =0 all spins S;(0)
are uncorrelated to the couplings J;;. For a spin glass
such a state could be prepared by heating the system up
to infinite temperatures, destroying all correlations to
previous times and then cooling it immediately to zero
temperature. Alternatively we could switch off an
infinitely strong magnetic field.

III. DYNAMICAL MEAN-FIELD THEORY

In the following we will use the fact that each spin
S;(t) is coupled to all other spins. It is reasonable to as-

J

N I
[ZMD]= |Trsy [ TI 1
i=1t=0

t, Ny
>
=1

t=0i

Xexp

li(t)h,-(t)l

dh;(1)O(S; (¢t +1)h;())d [h,-(t)—z

sume that the internal field A;(¢) at the location of spin i
can be replaced by an effective “‘mean field,” which does
not depend explicitly on the state of the other N —1 spins
S;(¢) when the system size N goes to infinity.

This is in fact the case. However, this effective field for
disordered models like the present one appears to be a
rather complex time-dependent random process, being
different from the averaged internal field [A;(2)].

In this section we shall construct random process for
the effective field h;(z) explicitly, which will be used later
to generate stochastic spin trajectories in a Monte Carlo
method.

We use the technique of dynamical generating func-
tions, which are a type of path integral that are very con-
venient for the description of stochastic dynamical sys-
tems [24-26].

Assume that we are interested in the statistical proper-
ties of a finite, possibly large number Ny of spin trajec-
tories of length 7/, at the sites =1, ..., N7, in a system
where the total number N of spins diverges.

These properties can be derived from the generating
Sfunction [ Z (1)] for the internal fields h;(¢), i=1,...,Nr,
t=0,...,t.

1+ 172 1 172
> e /A el B/ s,.(t)H
J]71

(6)

[ 1; denotes an average over the random couplings, and Tryg is the sum over all 2™ possible combinations of the spin
states S;(¢1)==x1. 6(x) is the unit step function. By construction, only those “spin paths” S;(¢) contribute to Z(1)

which fulfill the correct equations of motion (3) and (4).

Using the vector 1 of parameters /;(¢) conjugate to the internal fields h;(¢), the complete joint probability density of

the h;(2) can be reconstructed via Fourier transforms.

The calculation of [Z(1)]; in the limit N — o closely follows the derivation given by Henkel and Opper [27] for the
synchronous dynamics of a neural network, which in turn is based on the treatment of Sompolinsky and Zippelius [24]
for the dynamic mean-field theory of spin glasses. The formal steps of the calculation are given in Appendix A.

We find that in the thermodynamic limit the generating function completely factorizes into independent components

for the N spins:

NT
[ZD)], = IT (Trsl_(,)f I {dh()O(S;(t + Dh;(1))}exp li S (L(D)h,(2)) ]H 8 [h,.(t>—¢,.(z>—n S K(1,5)S,(s) ])¢ .
i=1 t t t s !

From this representation, we see that the spin dynamics
(3) is described by the uncorrelated system of stochastic
dynamical equations:

S;(t+1)=sgn(h; (1)) , (8)
with
hi(t)=¢;(t)+7 3 K(t,5)S;(s) .

s<t

In the mean-field picture the time-independent random

0))

—

couplings to other spins are replaced by Gaussian noise
terms ¢;(¢) with zero means and correlations

($:(0);(5))4=5,{Si(1)S;(5))4=8,C(t,5) . (9)

In addition, deterministic interactions K (¢,s) with spins
S;(s) at the same site but for all previous times s <t ap-
pear:

a
9¢(s)

K(t,s)=< sm) (10)

¢
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Replacing all spin variables recursively by spins and
Gaussian variables at earlier times, we find that for each
time ¢ the value of the spin S;(¢) is a function of the ran-
dom variables S;(0) and the r —1 Gaussian fields ¢,;(z).
Independent realizations of the stochastic spin trajec-
tories mimic the spin flips at a finite number of sites in a
“real” single infinite SK model.

The stochastic process (8) is completely determined if
the sets of order parameters K(t,s) and C(t,s) are
known. These in turn are determined from averages over
fields ¢(s) for times s < only.

We will end this section with exact relations for Gauss-
ian averages which can be obtained directly from the sto-
chastic dynamics.

The first relation helps us to express the order parame-
ter K(t,5) by the correlation function (S (¢)¢(s)), which
is easier to estimate than the average of the partial
derivative (10). It is based on a simple theorem for
Gaussian random variables. (It is a discrete version of
Novikov’s theorem [28], well known in the theory of sto-
chastic processes). Using Appendix B, we show that

t
(S(0)g(s))= K(t,7)C(r,s), (11)

=0

which holds independently of the parameter 7. On the
other hand, a fluctuation dissipation theorem, which
would enable us to express K(t,s) directly by C(t,s), is
not available in the asymmetric models.

Relation (11) can be used to show (see Appendix C)
that the correlation function C(t,s)=0, whenever |t —s|
is odd. This can be expressed symbolically as
C(odd, even)=C(even, odd)=0. As a consequence, the
magnetization m(¢)={S(¢)S(0)) at odd time steps van-
ishes (see also [29]).

Since a Gaussian process is completely determined by
its first two moments, we conclude that the sets of vari-
ables ¢(odd) and ¢(even) are independent. Second,
we prove in Appendix C that K(odd, odd’)
=K(even , even')=0. Inserting these relations into (8)
shows that the spins S(even) only depend on spins S (s)
with s =even, and fields ¢(s’) with s'=odd. Conversely
S(odd) is a function of the Gaussian fields ¢(even) alone.
Thus spins for odd- and even-time steps are completely
decoupled and independent random variables.

IV. MONTE CARLO SIMULATION

The single spin equations (8) can be used to calculate
exact averages for N= « by expressing the spin variables
as explicit functions of the Gaussian fields ¢(¢) and per-
forming integrations weighted by the multivariate Gauss-
ian measure. This integration is most conveniently per-
formed by a Monte Carlo process, where a sequence of
Gaussian random numbers with respect to the covariance
C (t,s) is generated and a trajectory of spins S () is creat-
ed via Eq. (8). The necessary averages in each time step
can be estimated by summing over a large number N of
trajectories. N, should not be confused with N, the num-
ber of spins in the model, which equals infinity.

The algorithm for the Monte Carlo simulation can be
described as follows. (For convenience we write the time

indices as subscripts in the matrix below.) Sample aver-
ages will be denoted by overbars.

1. Start at 1 =0:

(a) Set S¥0)=1 for all k=1,...,N;, where Ny
denotes the number of spin trajectories.

(b) Set hX0)=¢*0), where ¢X(0)’s are drawn
independently from the distribution  P($%(0))
=(1/V2m)exp[ — (4%(0))?/2].

2. An arbitrary time step

(a) Evaluate the spins at time ¢ from the dynamical
equations:

Skt)=sgn(h*(t—1)) for k=1,...,Ny . (12)

Note that the internal field 4 “(t — 1) was already calcu-
lated at time step # — 1.
(b) Calculate the sample averages over all trajectories:

S,S, for r=0,...,t—1, (13)

which give the correlation matrix for the Gaussian noise
variables:

$odo $160 $.90

. |#190 6161

®, = : - :
by - 6.,

1 S50 S,S,
SiSo 1
=1 : ] : (14)

St_"s'; . 1

(c) Now perform the decomposition @, =4 ' A I, where
A, is a triangular matrix.

(d) Draw the components of the vector
N,=(ng,ny,...,n,)7T independently from a normal dis-
tribution. Transform this vector according to

$,=AN,, (15)

which gives the right correlations for the components of
.-
(e) Compute the sample averages ¢,S, for 7=0, . . ., t.
(f) Obtain the coefficients K, . . . , K, by solving the
system of linear equations:

o

x,=K,®, , (16)
with

x,=(S;s ..., 8,57
and

K,=(K(1,0),K(t,1),...,K(,t—1),0)T. (17

(g) Determine the internal fields from

k) =¢*t)+n 3 K(t,7)SKT) . (18)

T<t

Reiterate steps 2(a)—2(g).
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To keep the numerical errors of the Monte Carlo in-
tegrations small, a sufficiently large number N, of spin
trajectories must be used. Since there are no interactions
between these N, spins, we can use N;=10° without
problems. Note, that for a finite SK model with N spins
about N2 couplings must be stored, which restricted
simulations to about N = 10° spins [18].

Let us assume for the moment that for times ¢', 7=t all
C(t',7) and K(¢',7) were known without errors. Then,
since for time ¢+1, N, additional, independent trajec-
tories are generated (avoiding the storage of the spins),
the additive quantities C(z+1,7) would fluctuate around
their true values with errors that vanish like ~N7!/2 as
N grows large. A small uncertainty in the parameters at
previous time steps may lead to additional, even sys-
tematic deviations, because, e.g., the Gaussian random
variables will not be drawn from their correct distribu-
tion. However, we expect that this error propagation
effect can be safely neglected over the temporal range
(t,=100) that was investigated in our simulations, when
a large number of N;=10° trajectories is used. Larger
fluctuations can occur for the memory kernel K (¢,s) (see
Fig. 6) at large ¢t and p=1. This happens when the dy-
namics becomes very slow and the linear system (16) is al-
most singular. However, being filtered by the summation
in Eq. (18), these fluctuations have only a small effect on
the magnetization. To support this assumption, ten in-
dependent runs of the algorithm for =1 have been per-
formed. The fluctuations of the magnetization m (¢) did
not increase with time ¢; e.g., Am(2)=0.98X10"3 and
Am(100)=0.96X 1073 =N /2. The error of the extra-
polated remanent magnetization m ., obtained by curve
fitting is also ~1073. A comparison of simulations with
different N, will be given in a forthcoming paper (which
treats the problem of nonzero temperature)..

We will end this section with a brief discussion of the
applicability of the present Monte Carlo method and its
limitations.

Obviously, our method can be applied only to systems
for which mean-field theory holds. In such cases an exact
single-site dynamics can be formulated. This is true
whenever there are no length scales in the problem. This
includes mainly infinite range (fully connected) models,
but also works for a finite coordination number, when the
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connectivity is completely random [30]. For short range
models a mean-field description can only be an approxi-
mation.

At present, the method is formulated for parallel dy-
namics only, which for computational purpose is the
most convenient choice. Models which are described by
differential equations in time, like the soft-spin version of
the SK model [24], will be harder to simulate. Single-site
equations have to be discretized in time, which may lead
to large dimensions for matrices K and C. However,
when the dynamics becomes slow, larger time steps may
be used. Finally, let us mention Glauber dynamics,
which in physical models is used to describe the dynamics
of Ising spins. A mean-field theory for the corresponding
SK model has been formulated in [26], where the single-
site problem involves averages over a complex Gaussian
measure. At present, it is unclear whether such an aver-
age can be simulated efficiently by a stochastic process.

V. RESULTS AND DISCUSSION
A. Magnetization

Using our Monte Carlo procedure we have estimated
the decay of the magnetization m (¢) for the first 100 time
steps (Fig. 1). Since m (¢)=0 for odd times, we consider
m (t) only for even ¢t. The results of our simulations can
be fitted well [Figs. 2(a) and 2(b)] by the function

(19)

where the parameters a, 7, and m _, are functions of the
symmetry 1. m, is the extrapolated value of the magne-
tization for t — =, i.e., the remanent magnetization. The
values of m ,, as a function of % are shown in Fig. 3. We
find a clear transition from positive values of m , for
7>7.=0.825 to m_, =0 for 1 below this value. This
confirms the result of Spitzner and Kinzel [16] and of
Pfenning, Rieger, and Schreckenberg [17], which were
obtained from a finite size scaling of the remanent magne-
tization for models with finite N.

The picture of a nonequilibrium transition at 7, is fur-
ther supported by an analysis of the characteristic time 7
(Fig. 4). For n<7, the magnetization decays rapidly to
zero with a finite relaxation time 7. If 7 is increased, we
find a divergence of 7 as  approaches 7, from below.

m(t)=m , +const Xt %exp(—t/7),

FIG. 1. Magnetization at even times for

n=1.00 different values of 7.

7=0.95
7=0.90
7n=0.85
7=0.80
7n=0.75
7=0.50
7=0.25

OO0 %X XM+ 00
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For all 7> 1), the decay of the magnetization is a pure
power law with an 7-dependent exponent a (see Fig. 5):

m(t)=m _ +const Xt ¢ . (20)

The strong memory effect to the initial conditions at 7
close to 1 is directly reflected in the behavior of the

0.184
0.1 :
o.14—i ]
0.12—: -

0.10—: + _

Meo

0.084 ]
0.06 1
0.04 3

0.02 + ]

o.004+——+r—7r—+r—vr—r—"r——r—r—r—r1—rr—
0.80 0.85 0.90 0.95 1.00

FIG. 3. Remanent magnetization as a function of the symme-
try.

o n=0.825

a n=0.85

+ n=0.90

zx 7=0.95

x 7=1.00

FIG. 2. (a) A log-log plot of the magnetiza-

tion at even ¢ for 7= 7, =0.825, together with
the fit [Eq. (19)] (solid lines). (b) Magnetization
at even t for n <. =0.825, together with the
fit [Eq. (19)] (solid lines).

a n=0.825

a n=0.775

a 7=0.70

0 n=0.60

e 7=0.50

o n=0.25

memory kernel K (¢,s). As can be seen from Appendix A,
this function describes the average response of the mag-
netization at time ¢ to small variations of an external field
at time s. For 17<<1, memory effects are short ranged
and K decays after a few steps. We have displayed
K (100,t) for =1 as a function of ¢ in Fig. 6. Apart

T T
0.40 050 0.60 0.70 0.80

FIG. 4. Inverse of the relaxation time r [See Eq. (19)] for the
magnetization.
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FIG. 5. Exponent for the power law of the magnetization,

Eq. (19).

from the fluctuations in the middle of the plot, which are
due to numerical noise, a drastic increase of K at small ¢
can be observed, showing a stronger memory of the initial
conditions.

B. Dynamics at long times

We next try to find what type of attractor is ap-
proached by the system for long times. For =1, we
know that the dynamics relaxes into a cycle of length 2.
Motivated by this exact result, we have studied the corre-
lation function

N
C,()=N"'3 St —1)S;(t+1)
i=1
=(S(t—DS+1)),
which converges to the value 1 for ¢t — o if the system
ends in a 2-cycle. Again the results of our simulations for

this function could be very well fitted (Fig. 7) by the sim-
ple relation

Cy(1)=Cy( )+const Xt ™7 . 21

xo 00+ |

0.10 T T T T T T T T T
— 7=1.00
0.08+ B
—~
-‘_{ 0.064 B
o
(@)
~—
~ 0.04+4 —
e
0.024 ~
0.00 g e e 'VM\V : . ;
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FIG. 6. Memory kernel K(100,¢) for n=1. We have con-
nected the values at odd times ¢ by straight lines. The values
K (100,2)=0 at even ¢ are not displayed.

In contrast to the magnetization, the decay of C, is de-
scribed by an (7-dependent) power law (see also [17]) over
the entire region of n (although the constant becomes
small for small 5).

In Fig. 8 we have displayed C,( ) as a function of 7.
It reaches the value 1 only for p=1. The curve is in ex-
cellent agreement with the simulations presented in [13].
Even in the nonergodic region 17, <7 <1 the system does
not completely freeze into 2-cycles; some randomness in
the spin flips is still persistent.

In order to gain more insight into the nature of the
freezing transition at 7)., we have analyzed the distribu-
tion of spin-flip frequencies during the observation time
of t,=100 time steps. This distribution was sampled
from 10° independent realizations of the single spin dy-
namics (8). Following the arguments of Sec. III this is
equivalent to sampling the spin flips at 10° different sites
from a single infinite SK model. As the result, in Fig. 9
we show the distribution P(n), which gives the fraction
of spins which have flipped exactly n times during the
100 time steps of our simulation. [The fact that P(n) is

FIG. 7. A log-log plot of the two-step corre-

lation function. The lines represent the fit [Eq.
(21)].

Fit

7=0.80

7=0.85

7=0.90

7=1.00

7=0.50
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FIG. 8. Extrapolated limiting values of the two-step correla-
tion function C,(¢) [Eq. (21)] for infinite times.

symmetric around the point n =t,/2 can be understood
from the symmetry properties of the single spin dynam-
ics; see Appendix C.]

The most striking features of the curves are the two
peaks located at n =0 and 100, which occur for large
values of 17 and correspond to a finite fraction of spins
which almost never, or almost always, perform flips. The
dynamics of such spins represents cycles of length 2.
Such spins clearly contribute to the remanent magnetiza-
tion, because after an even number of steps they assume
their initial states. Clearly for n=1 all spin trajectories
belong to these peaks at large times. If 7 is lowered, the
weight of the two peaks becomes smaller, and an addi-
tional broad distribution of spin flip frequencies develops.
Such trajectories represent more or less random se-
quences of spin flips. For 7=0.6 the “2-cycle” peaks
have disappeared.

Due to the limited simulation time we cannot precisely
locate the value of 7 for which the peaks vanish for the
first time at = co. But it seems reasonable that this will
be again the critical value 7.. Below this value cycles of
length 2 have a vanishing probability. For the extreme

C(t,t—At)

H. EISSFELLER AND M. OPPER
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0124 J

FIG. 9. Distribution of spin-flip frequencies during the first
100 steps.

case =0, the spin flips are completely randomized and
P (n) becomes a binomial distribution.

These simulations suggest the following picture: The
introduction of asymmetry at zero temperature will leave
a finite fraction of spins in an ordered state. This ordered
“cluster” of spins melts down and vanishes when 7 is de-
creased to its critical value. Below 7., the SK model
with asymmetric couplings is fully ergodic. The dynam-
ics of a single spin becomes a stationary process for long
times. This can be also seen from Fig. 10, where the
correlations C(t,t —At)=(S(¢)S(t—At)) are displayed
as functions of the time lag At for three different times ¢.
The curves show the convergence to a steady-state corre-
lation function depending on time differences only.
Whether the transition at 7. leads to a divergence of the
corresponding correlation time will require longer simu-
lation times and cannot be judged from our present data.
Alternatively we may use the ansatz of stationarity for
the mean-field equations to obtain self-consistent solu-
tions for correlation functions and memory kernels in the
ergodic region. Such an approach will be discussed else-
where.

FIG. 10. Correlation function C(t,t—At)
for t =80, 90, and 100.

7=0.80
7=0.70
7 =0.60
7=0.50
7=0.25

11811
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VI. SUMMARY AND OUTLOOK

We have applied an alternative method to the infinite
(N =00 ) SK model with asymmetric interactions. Using
Monte Carlo simulations of exact dynamical mean-field
equations, we have avoided the finite size effects of the
simulations for large disordered spin systems. In addi-
tion, there is no need to store or recompute a huge num-
ber (=~N?) of quenched random interactions.

We have shown that the system undergoes a freezing
transition as a function of asymmetry. The critical sym-
metry parameter 7). =0.825 separates a frozen phase with
finite remanent magnetization from an ergodic phase
where the system loses its memory from the initial state.
In the frozen phase a cluster of spins in ordered 2-cycles
coexists with spins that perform random flips with finite
correlation times. Below 7)., the ordered cluster has com-
pletely vanished.

Further investigations will include the effects of
nonzero temperatures which can easily be incorporated
in the formalism. To explore the geometry of the phase

[Z(D)]; =

Trs [ 1 {dh,.(t)dﬁ,.<t>®(s,.(z+1)h,.(t))
it

space in more detail, we can also simulate the time evolu-
tion of a number of (real) replicas of the system.

A further interesting application will be the problem of
learning in neural networks. It is not clear in general
how the static results derived from replica theory are
relevant for the dynamics [31-33] of learning algorithms
when replica symmetry is broken (see, e.g., [34]).
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APPENDIX A: DERIVATION
OF DYNAMICAL MEAN-FIELD EQUATIONS

To perform the average over the J;;’s, one uses the in-
tegral representation for the 6 functions and introduces
auxiliary fields 4, ;(t) conjugate to the internal fields A;(z):

172 172
Xexp l'il\i(t) h,-(t)—-éh [ 1tn y Jit+ 1—;—77- Ji ISj(t) ]exp iZli(t)h,(t) ] ]
VEall it J
(A1)
where in the last exponential only the fields /;(¢) at the sites i =1, ..., N are different from zero. The average results
in
[z, OETrS(,)f I1 {dh()dh(DO(S;(t+ 1)k, (1) texp [i S (L (0, (1) +A,(Dh,(1)) ]
it it
Xexp | === 3 3 A (0 (S,(08,(5)- 2L 3 3 A0SR, ()5,(1) | . (A2)
2N I, j7i s,t ! / 2N i,j7i st ! !
Introducing order parameters C (¢,5) and K (t,s)
1
C(t’S)_Tv— ?Sj(t)Sj(s) ,
i (A3)
K(t9=—2 3 ki(s)5;(1)
J
together with their conjugates C(z,s) and K(1,s), and neglecting terms of order N ~!, we obtain
[ZD)], = [ [T (NdC(1,5)dC(1,5)iNdK (1,5)dR (1,5))
t,s
Xexp [iN 3 [C(1,9C(¢,5)+iK (1,5)R (1,5)]+ 3 In[ Z,(1;;C,C,K,R)] | , (A4)
t,s i

where the single-site partition function Z; is given by
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zu,,céxk)«rrs(,,fn 'dh ()dh;(1)O(S;(t+ 1)k, (1)) texp[i 2(1(: hi()+h(DR(2))]

X exp ‘EC(ts (Dh(s)—i 3, C(£,5)8;(1)S;(s)
s, t
—L;sz(z,sm,.(z)s $)—i 3 R(t,5)h;(5)S,(1) (A5)
st s, t

At this point the dynamical variables are decoupled with respect to their site index i.
In the limit N — « the integrations over C(t,s), ¢ (t,s), K(t,s), and R (t,s) can be performed with the saddle-point
method. The stationary values of the order parameters are found from the following set of equations:

i
6(t,s)=-——272i‘, (hi(hy(s)) 5,
C(t,s)=%/:2 (5,(08,(5)), ,
R(t,5)= ——’]{7 3 (h(0Si(s)) 5,

K(t5)= =+ S(A(s)S,(0),, .

(A6)

(A7)

(A8)

(A9)

) > denotes an average with respect to the single-site partition function.

It can be shown that the first saddle-point equation has only the trivial solution C(t,5)=0, any other solution would

violate the normalization [Z(] =0)]=1.
From (A8) and (A9) we find

ﬁ(t,s)=—;lK(s,t) .

Omitting the single-site partition functions with /; =0
1), we arrive at

[Z(D)], = H Trg o [ I

i=1

X exp {—%2C,sfz\i(t)ﬁi(s)—inZK,sﬁ, 1)S; s)}
s, t s, t

The generating function (A11) describes a system of Np
noninteracting spins. It can be rewritten in a form where
each spin is coupled to an effective stochastic field.

We linearize the quadratic terms in /,(¢) by introduc-
ing Gaussian random variables ¢,(¢), independently
for each i with zero mean and covariance
(¢,(1)¢,(5)) ;=C (1,5). Using the identity

exp {—%z ($:(00:()) ghi (D (5) l

=<exp {—*i 2¢i(t)ﬁi(t) ]):ﬁ ,  (A12)

where { ), denotes an average over the time-dependent
Gaussian random variables ¢;(¢), and integrating over the
auxiliary fields if (t), we arrive at Eq. (7).

Rewriting the order parameter equations (A7) and (A9)
as Gaussian averages, using the fact that all [those with
I;(t+)=0] but a finite number of single-site averages give

dh;(0)dh,(1)O(S;(t+1) ,-(t))}exp

(A10)

(collecting all prefactors it can be shown that they are equal to

S (L) () +h(Dh, (1))

(A11)

f

the same value, the correlation function reads
<¢(t)¢(5 )d, (S()S(s) >¢

Similarly, the kernel K (¢, s) can be expressed by an
average over the fields ¢;(¢z). Comparing (Al12) and
(A11), we see that each term —ziz\ (s) can be replaced by a
derivative 3/9¢(s). Thus

(A13)

a3
=—i =(——S()) . Al4
K (1,5)=—i{h(s)S(2)), <a¢(s) ( )>ds (A14)
This relation also shows that K (t,s) is the average
response of the magnetization at time ¢ with respect to a
small variation of an external field at time s.

APPENDIX B: A THEOREM
FOR GAUSSIAN RANDOM VARIABLES

Let ¢ be a vector with r components ¢; which are
Gaussian distributed with zero mean (¢;)=0 and co-
variance matrix {x;x ] )=C, ;- We show for functions f
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of these random variables that

$es#)=3 ck,-(ﬁa%fﬂ) . ®1)
Integrating the right-hand side of Eq. (B1) by parts, we obtain
30y( L2 ) = 3 0y [ L ewp (13651008, |46
> Ck,ffw ~exp [— 13 Coy'tp9, ]d'¢
« 2 Cyj ff(¢) (¢, ~exp [— % Ca'6,9, ] ’y (B2)

where we have omitted the normalization constant for
the Gaussian distribution. Performing the sum over j, we
find

30y ( ) = [ e [~4 3 C5'4,9, |46
j J P
={¢f($) , (B3)

which is the desired result.
Applying this theorem to the function f(¢$)=S(¢)
=S(t;¢) and using (10) yields Eq. (11).

APPENDIX C:
SYMMETRY OF ORDER PARAMETERS

We prove the symmetry properties of K(t,s) and
C (¢,s) by induction:

It is easy to see that (S(1)S (0)) =0. We assume for
t =even, i.e., t +1=o0dd, that (S(odd)S(even))¢—0 for
all odd , even=<t¢, so that Gaussian variables at odd and
even times are decoupled. We then perform the transfor-
mation ¢(odd)— —¢(odd) for all Gaussian variables at
odd times. This leaves the joint Gaussian density and the
odd-time spins invariant but transforms S(even) into
—S(even). So

(S(t+1)S(even))=(S(odd)S(even))
=—(S(odd)S(even))=0. (C1)

To treat K (t,s), we use that {S(odd)¢(odd’)) =0. The
vector K (t+1,s),s=1,3,5, ... is a solution of (11):

0=(S(t+1)p(odd’))
=(S(odd)¢(odd’))

= ¥ K(odd, odd”)C(odd"”, odd’) . (C2)
odd"”

Since the matrix C is positive definite, the linear system
has the only solution K (¢ +1, odd) = 0, from which the
relation is proved. The same arguments apply for
t =odd.

Finally we prove a simple relation for the average num-
ber of spin flips during a time interval At from these sym-
metry properties.

For a given trajectory 7, of spins the corresponding
trajectory 7T,, where all spins at odd-time steps are simul-
taneously reversed [S(odd)— —S(odd)], must have the
same probability as 7;. Whenever a spin flip occurs in
Ty, it will be absent in T, and vice versa. Since the total
number of possible flips equals At, we obtain

Pr((No. of flips)=n)
=Pr((No. of flips)=At—n). (C3)
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